Exact diffusion coefficient of self-gravitating Brownian particles in two dimensions

نویسنده

  • P. H. Chavanis
چکیده

Abstract. We derive the exact expression of the diffusion coefficient of a self-gravitating Brownian gas in two dimensions. We show the existence of a critical temperature Tc at which the diffusion coefficient vanishes. For T < Tc the diffusion coefficient is negative and the gas undergoes gravitational collapse. This leads to the formation of a Dirac peak concentrating the whole mass in a finite time. We also stress that the critical temperature Tc is different from the collapse temperature T∗ at which the partition function diverges. These quantities differ by a factor 1− 1/N where N is the number of particles in the system. We provide clear evidence of this difference by explicitly solving the case N = 2. We also mention the analogy with the chemotactic aggregation of bacteria in biology, the formation of “atoms” in a two-dimensional (2D) plasma and the formation of dipoles or supervortices in 2D point vortex dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical mass of bacterial populations and critical temperature of self-gravitating Brownian particles in two dimensions

We show that the critical mass Mc = 8π of bacterial populations in two dimensions in the chemotactic problem is the counterpart of the critical temperature Tc = GMm/4kB of self-gravitating Brownian particles in two-dimensional gravity. We obtain these critical values by using the Virial theorem or by considering stationary solutions of the Keller-Segel model and Smoluchowski-Poisson system. We ...

متن کامل

Post - collapse dynamics of self - gravitating Brownian particles in D dimensions

We address the post-collapse dynamics of a self-gravitating gas of Brownian particles in D dimensions, in both canonical and microcanonical ensembles. In the canonical ensemble, the post-collapse evolution is marked by the formation of a Dirac peak with increasing mass. The density profile outside the peak evolves self-similarly with decreasing central density and increasing core radius. In the...

متن کامل

Exact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature.

We provide an exact analytical solution of the collapse dynamics of self-gravitating Brownian particles and bacterial populations at zero temperature. These systems are described by the Smoluchowski-Poisson system or Keller-Segel model in which the diffusion term is neglected. As a result, the dynamics is purely deterministic. A cold system undergoes a gravitational collapse, leading to a finit...

متن کامل

Hamiltonian and Brownian systems with long-range interactions

We discuss the dynamics and thermodynamics of systems with long-range interactions. We contrast the microcanonical description of an isolated Hamiltonian system to the canonical description of a stochastically forced Brownian system. We show that the mean-field approximation is exact in a proper thermodynamic limit. The equilibrium distribution function is solution of an integrodifferential equ...

متن کامل

Virial theorem for rotating self-gravitating Brownian particles and two-dimensional point vortices

Abstract. We derive the proper form of Virial theorem for a system of rotating self-gravitating Brownian particles. We show that, in the two-dimensional case, it takes a very simple form that can be used to obtain general results about the dynamics of the system without being required to solve the Smoluchowski-Poisson system explicitly. We also develop the analogy between selfgravitating system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006