Exact diffusion coefficient of self-gravitating Brownian particles in two dimensions
نویسنده
چکیده
Abstract. We derive the exact expression of the diffusion coefficient of a self-gravitating Brownian gas in two dimensions. We show the existence of a critical temperature Tc at which the diffusion coefficient vanishes. For T < Tc the diffusion coefficient is negative and the gas undergoes gravitational collapse. This leads to the formation of a Dirac peak concentrating the whole mass in a finite time. We also stress that the critical temperature Tc is different from the collapse temperature T∗ at which the partition function diverges. These quantities differ by a factor 1− 1/N where N is the number of particles in the system. We provide clear evidence of this difference by explicitly solving the case N = 2. We also mention the analogy with the chemotactic aggregation of bacteria in biology, the formation of “atoms” in a two-dimensional (2D) plasma and the formation of dipoles or supervortices in 2D point vortex dynamics.
منابع مشابه
Critical mass of bacterial populations and critical temperature of self-gravitating Brownian particles in two dimensions
We show that the critical mass Mc = 8π of bacterial populations in two dimensions in the chemotactic problem is the counterpart of the critical temperature Tc = GMm/4kB of self-gravitating Brownian particles in two-dimensional gravity. We obtain these critical values by using the Virial theorem or by considering stationary solutions of the Keller-Segel model and Smoluchowski-Poisson system. We ...
متن کاملPost - collapse dynamics of self - gravitating Brownian particles in D dimensions
We address the post-collapse dynamics of a self-gravitating gas of Brownian particles in D dimensions, in both canonical and microcanonical ensembles. In the canonical ensemble, the post-collapse evolution is marked by the formation of a Dirac peak with increasing mass. The density profile outside the peak evolves self-similarly with decreasing central density and increasing core radius. In the...
متن کاملExact analytical solution of the collapse of self-gravitating Brownian particles and bacterial populations at zero temperature.
We provide an exact analytical solution of the collapse dynamics of self-gravitating Brownian particles and bacterial populations at zero temperature. These systems are described by the Smoluchowski-Poisson system or Keller-Segel model in which the diffusion term is neglected. As a result, the dynamics is purely deterministic. A cold system undergoes a gravitational collapse, leading to a finit...
متن کاملHamiltonian and Brownian systems with long-range interactions
We discuss the dynamics and thermodynamics of systems with long-range interactions. We contrast the microcanonical description of an isolated Hamiltonian system to the canonical description of a stochastically forced Brownian system. We show that the mean-field approximation is exact in a proper thermodynamic limit. The equilibrium distribution function is solution of an integrodifferential equ...
متن کاملVirial theorem for rotating self-gravitating Brownian particles and two-dimensional point vortices
Abstract. We derive the proper form of Virial theorem for a system of rotating self-gravitating Brownian particles. We show that, in the two-dimensional case, it takes a very simple form that can be used to obtain general results about the dynamics of the system without being required to solve the Smoluchowski-Poisson system explicitly. We also develop the analogy between selfgravitating system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006